If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2-10n+18=0
a = 1; b = -10; c = +18;
Δ = b2-4ac
Δ = -102-4·1·18
Δ = 28
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{28}=\sqrt{4*7}=\sqrt{4}*\sqrt{7}=2\sqrt{7}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{7}}{2*1}=\frac{10-2\sqrt{7}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{7}}{2*1}=\frac{10+2\sqrt{7}}{2} $
| 12+4x-4=8(1/2x+1) | | 5(2-2y)9y=2-19y | | 0.85(6.20x+x)=107.27 | | -14+5x-7x=-7-x | | T=2n+7 | | x^2+32=19 | | 25x+5=20x+10 | | 9y+17=180 | | 14+5k=1+4k+5 | | -5y+y=20 | | 1.1x^2+3.2x=-2.5 | | -12n=+12(4n-4)=6(1+5n) | | 34=-8x+6(x+5) | | -14(3a+6)=12(6-4a)=12 | | 5k+7k-5=1+8k-6 | | x=4+3/14 | | 3d-d+5d=7 | | 4(a-2)+a=5a-9 | | 12y-18=4y+6= | | 4(a-2)+a=6a-5 | | 4(a-2)+a=6a-3 | | 4(a-2)+a=4a-1 | | 4(a-2)+a=4a-3 | | 4(a-2)+a=4a-9 | | 144y+12=24 | | 7=3.6+3.1x | | 4(a-2)+a=3a-4 | | 27x^2-60x-7=0 | | 4(a-2)+a=2a-3 | | 840=7x | | 4(a-2)+a=2a-7 | | 90=10+.8x |